Python – Data Visualisation Code Snippets

Bar Chart

Plot a horizontal bar chart of the data contained in the df Pandas DataFrame.

lab val
0 A 10
1 B 30
2 C 20
import matplotlib.pyplot as plt
import seaborn as sns
sns.barplot(x="lab", y="val", data=df)
plt.show()

Count Plot

Pet owners were surveyed to determine their preference for dogs, cats or both. Visualize the response data contained in the list pets.

import matplotlib.pyplot as plt
import seaborn as sns
pets = ["cats", "cats", "dogs", "both", "dogs", "both", "cats", "cats", "cats", "dogs", "dogs", "dogs", "dogs", "cats", "cats", "both"]
sns.countplot(pets)
plt.show()

 

Histogram

Plot a histogram of the pH variable in the wine_quality DataFrame using 40 bins.

import matplotlib.pyplot as plt
import seaborn as sns
sns.distplot(wine_quality['pH'], hist=True, rug=False, kde=False, bins=40)
plt.show()

 

Plot a histogram of the Ca variable in the glass DataFrame.

import matplotlib.pyplot as plt
import seaborn as sns
sns.distplot(glass['Ca'], hist=True, rug=False, kde=False)
plt.show()

Box Plot

Plot boxplots for the sepal_length numerical variable and group according to species.

The data is contained in the iris DataFrame.
The boxplots should be ordered as follows: “virginica”, “versicolor” and “setosa”.

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_context(rc={"font.size":18})
ax = sns.boxplot( x="species", y="sepal_length", data=iris, order=["virginica", "versicolor", "setosa"])
plt.show()

Scatter Plot

Use a + to indicate the points on the scatter plot.

import matplotlib.pyplot as plt
import seaborn as sns
ax = sns.scatterplot(x="citric acid", y="pH", data=wine, marker="+")
plt.show()

Add a green vertical reference line to the plot at x=50.

import matplotlib.pyplot as plt
import seaborn as sns
sns.scatterplot('x', 'y', data=df)
plt.axvline(50, color='green')
plt.show()

Label the x axis as Sepal Length (cm) and the y axis as Sepal Width (cm)

import matplotlib.pyplot as plt
import seaborn as sns
sns.scatterplot(x="sepal_length", y="sepal_width", data=df)
plt.xlabel("Sepal Length (cm)")
plt.ylabel("Sepal Width (cm)")
plt.show()

Set the overall font size to be used in plots to 20.

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_context(rc={"font.size":20})
ax = sns.scatterplot(x="total_bill", y="tip", data=tips)
plt.show()

Facet Grid

Initialize a 2×2 grid of facets using the tips dataset. The time variable should determine the number of columns and the smoker variable should determine the number of rows.

import matplotlib.pyplot as plt
import seaborn as sns
g = sns.FacetGrid(tips, col="time", row="smoker")
plt.show()

Line Plot

Plot the monthly dam level height contained in the dam_level DataFrame.

--dam_level
date level
2019-01-01 48.6
2019-02-01 46.7
2019-03-01 44.8
import matplotlib.pyplot as plt
import seaborn as sns
sns.lineplot(x='date',y='level', data=dam_level)
plt.xticks(rotation=45)
plt.show()

Plot a line plot of Score as a function of Overall rank. The variables are contained in the happiness DataFrame.

import matplotlib.pyplot as plt
import seaborn as sns
ax = sns.lineplot(x="Overall rank", y="Score", data=happiness)
plt.show()

Joint Plot

Plot the regression and kernel density fits for the BPM and Popularity variables in the top50 DataFrame.

import matplotlib.pyplot as plt
import seaborn as sns
g = sns.jointplot(x="BPM",y="Popularity",data=top50,kind="reg")
plt.show()

 

 

Pair Plot

Create a pair plot of the song_metrics dataset.

import matplotlib.pyplot as plt
import seaborn as sns
sns.pairplot(song_metrics)
plt.show()

 

Kernel Density Estimation / KDE Plot

Plot the distributions of the Mg and Al variables contained in the glass DataFrame on the same plot using kernel density estimation. Shade the distributions.

import matplotlib.pyplot as plt
import seaborn as sns
sns.kdeplot(glass['Mg'], shade=True)
sns.kdeplot(glass['Al'], shade=True)
plt.show()